Management of Hyperkalaemia in Adults

MILD
5.5-5.9mmol/l

Identify and treat cause promptly. Consider long term management strategies.

At this stage, acute hyperkalaemia treatment is **not** required.

MODERATE
6.0-6.4mmol/l

Assess rate of change – was rise in potassium level significant? Is a further rise of potassium anticipated?

Identify and treat cause promptly. Consider long term management strategies.

SEVERE
≥6.5mmol/l

Perform urgent medical assessment: ABCDE

Urgent ECG – Look for: prolonged PR interval or QRS duration, tall, tented T-waves, any new arrhythmia (e.g. AF, VT), 2nd degree AV block or complete heart block. [Compare with baseline ECG]

Protect the heart:
10ml of IV calcium gluconate 10% administered over 2-3 minutes

Monitor cardiac rhythm with ECG or continuous cardiac monitor

Shift potassium into cells - administer:
1. IV Actrapid® 10units in 50ml of glucose 50% over 30 minutes
2. 10mg of nebulised salbutamol

Recheck potassium level in **2 hours** and **6 hours** after treatment. If unable to obtain blood sample, an arterial gas sample would suffice.

Capillary glucose (BM) **MUST** be monitored:
Every 15 minutes in the first hour
Every 30 minutes in the second hour
Every hour thereafter for a total of six hours

IMPORTANT POINTS TO CONSIDER

- Contact the Renal team for advice if hyperkalaemia persists after initial treatment. Discuss with a senior member of your clinical team **first**
- Calcium gluconate 10% should be administered by medical staff or Advanced Nurse Practitioners. Duration of action is anticipated to be 30 to 60 minutes – repeat if required. Please check patency of IV access prior to administration
- Peak effect of insulin glucose is usually seen within 30 to 60 minutes after the infusion. This effect may last for several hours with a **rebound in potassium** anticipated
- The effect of nebulised salbutamol can happen within 30 minutes of administration and may last for 2 hours
- Dialysis patients should be treated as above but the on-call Renal Registrar or Consultant **must** be contacted as urgent dialysis may be required
- Administration of sodium bicarbonate 1.26% infusion may cause sodium and fluid overload therefore is not a routine treatment strategy unless metabolic acidosis is a concern

LONG TERM MANAGEMENT STRATEGIES

- Maintain treatment of underlying cause(s) of hyperkalaemia as clinically indicated
- All medications which can cause hyperkalaemia should be withheld or stopped
- Cation-exchange resins (eg: Oral calcium resonium 15g three times daily) may be considered in some slow resolving cases and should always be prescribed with lactulose
- Consult the Dietetics team for low potassium dietary advice

Written by: Dr Madeleine Vernon, Specialist Registrar Renal Medicine
Dr Jo Hall, Renal Pharmacist
Dr Eleri Williams, Specialist Registrar Renal Medicine

(Developed by the Renal Unit in partnership with the Emergency Department, Critical Care, Cardiology and Endocrinology)

Approved by: Drug & Therapeutics Committee August 2017

Review date: August 2019

CAUSES OF HYPERKALAEMIA

<table>
<thead>
<tr>
<th>Medications</th>
<th>Acute conditions</th>
<th>Pseudo-hyperkalaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE inhibitors</td>
<td>Acute kidney injury</td>
<td>Test tube haemolysis</td>
</tr>
<tr>
<td>Angiotensin Receptor Blockers</td>
<td>Metabolic acidosis</td>
<td>Prolonged tourniquet time</td>
</tr>
<tr>
<td>Potassium sparing diuretics</td>
<td>Rhabdomyolysis</td>
<td>Marked leukocytosis</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Tumour lysis syndrome</td>
<td>Haemolysis ‘Drip arm’ sample</td>
</tr>
<tr>
<td>Potassium supplements (IV/oral)</td>
<td>Burns</td>
<td></td>
</tr>
<tr>
<td>Beta blockers</td>
<td>Hypo-aldosteronism</td>
<td></td>
</tr>
<tr>
<td>Suxamethonium</td>
<td>Type IV renal tubular acidosis</td>
<td></td>
</tr>
</tbody>
</table>

NO